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Abstract 

Background and Objectives. DNA methylation algorithms are increasingly used to estimate 

biological aging; however, how these proposed measures of whole-organism biological aging 

relate to aging in the brain is not known. We used data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and the Framingham Heart Study (FHS) Offspring Cohort to 

test the association between blood-based DNA methylation measures of biological aging and 

cognitive impairment and dementia in older adults.  

Methods. We tested three ‘generations’ of DNA methylation age algorithms (1st generation: 

Horvath and Hannum clocks; 2nd generation: PhenoAge and GrimAge; and 3rd generation: 

DunedinPACE, Dunedin Pace of Aging Calculated from the Epigenome) against the following 

measures of cognitive impairment in ADNI: clinical diagnosis of dementia and mild cognitive 

impairment; scores on AD/ADRD screening tests (Alzheimer’s Disease Assessment Scale; Mini-

Mental State Examination; Montreal Cognitive Assessment); and scores on cognitive tests (Rey 

Auditory Verbal Learning Test; Logical Memory Test; Trail Making Test). In an independent 

replication in the FHS Offspring Cohort, we further tested the longitudinal association between 

the DNA methylation algorithms and risk of developing dementia.  

Results. In ADNI (N = 649 individuals), the 1st generation (Horvath and Hannum DNA 

methylation age clocks) and the 2nd generation (PhenoAge and GrimAge) DNA methylation 

measures of aging were not consistently associated with measures of cognitive impairment in 

older adults. In contrast, a 3rd generation measure of biological aging, DunedinPACE, was 

associated with clinical diagnosis of Alzheimer’s Disease (beta[95%CI]=0.28[0.08-0.47]) and 

with poorer scores on AD/ADRD screening tests (beta[Robust SE]=-0.10[0.04] to 0.08[0.04]), 

and cognitive tests (beta[Robust SE]=-0.12[0.04] to 0.10[0.03]).  The association between faster 
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pace of aging, as measured by DunedinPACE, and risk of developing dementia was confirmed in 

a longitudinal analysis of the FHS Offspring Cohort (N = 2,264 individuals, HR[95%CI] 

=1.27[1.07-1.49]).  

Discussion. Third generation blood-based DNA methylation measures of aging could prove 

valuable for measuring differences between individuals in the rate at which they age, in their risk 

for cognitive decline, and for evaluating interventions to slow aging.  

 
 
 
Introduction 

Aging can be conceptualized as gradual and progressive deterioration in biological 

system integrity causing morbidity and disability1. These changes, in turn, are thought to increase 

vulnerability to multiple age-related diseases2, 3, including dementias. Advances in both basic 

and applied aging research could be spurred by the availability of tools that can measure 

biological aging. Medical, behavioral, and social sciences need measures of biological aging in 

order to identify risk factors and mechanisms that accelerate aging and to use in studies of social 

groups that are thought to be aging at different rates4. Applied science needs measures of 

biological aging in order to evaluate whether interventions succeed in slowing aging. Multiple 

companies are developing drug therapies that target aging biology, and several are being 

evaluated in human trials (clinicaltrials.gov). Behavior-change science is also working toward 

interventions to extend healthspan, including increasing physical activity, hypertension control, 

cognitive stimulation, dietary modification, and social engagement5-7. Whether they are 

pharmaceutical or behavioral, interventions that aim to extend healthspan need to have a measure 

to evaluate whether or not aging has indeed been slowed. However, as of this writing, there is no 

widely accepted measure of biological aging8, 9.  This article reports the association between 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

dementia, one of the most feared and costly diseases of aging, and five leading candidate 

measures of aging based on DNA methylation. 

DNA methylation is an epigenetic mechanism by which specific points of the genome 

(CpGs) are chemically modified (methylated) and thereby affect gene regulation. Recent efforts 

to develop measures of aging have focused on blood DNA methylation because it is a biological 

substrate that is sensitive to age-related changes10, 11. Using machine learning, these 

measurement efforts involve developing algorithms to capture information about aging by using 

data about DNA methylation levels of multiple CpGs across the genome. These methylation 

algorithms have evolved rapidly. The first generation of methylation algorithms was trained on 

chronological age in samples ranging in age from children to older adults. These “clocks” 

identified methylation patterns that vary by chronological age. If a person’s score on such clocks 

is older than his/her actual age, it is inferred that s/he is biologically older. The first-generation 

algorithms include the “Hannum clock”12 and the “Horvath clock.”13 The second generation of 

methylation algorithms added measures of people’s current physiological status in order to 

identify methylation patterns that account for differences in current health and that predict 

mortality.  These second-generation algorithms include PhenoAge14 and GrimAge15. The 

DunedinPACE (Pace of Aging Calculated from the Epigenome) is a third-generation algorithm 

that was developed by first measuring people’s rate of physiological change over time and then 

identifying the methylation patterns that captured individual differences in their age-related 

decline. Specifically, it measured  age-related change in 19 biomarkers among individuals of the 

same chronological age over a 20-year observation period16 and then identified methylation 

patterns at the end of the observation period that estimated how fast aging occurred during the 
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years leading up to the point of measurement17.  Thus, it is designed to capture methylation 

patterns reflecting individual differences in age-related decline. 

These DNA methylation algorithms have been embraced by the research community as 

well as by private companies. But the literature evaluating them is fragmented.  Although all of 

these algorithms purport to measure aging, they have surprisingly low agreement18, 19; articles 

often report promising findings from one (or more) DNA methylation algorithms, but often in 

different samples, and many algorithms show inconsistent associations with outcomes11, 20-23. 

Important validation steps are now being taken to rigorously evaluate multiple DNA methylation 

algorithms in the same study (e.g., in the Health and Retirement Survey)19, 24. What has not been 

reported is an evaluation of multiple DNA methylation algorithms in the same study with the 

outcome of dementia.   

Here we leverage data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to 

test associations of the leading measures from the three generations of DNA methylation 

algorithms with cognitive aging and dementia. We examined three sets of “gold standard” 

measurements in cognitive-aging research.  First, we compared the DNA-methylation 

algorithms’ scores as a function of ADNI participants’ diagnoses:  Cognitively Normal, Mild 

Cognitive Impairment (MCI), or Dementia. Second, we evaluated the algorithms in relation to 

three instruments that are used as cognitive screening tools for AD/ADRD: The Alzheimer’s 

Disease Assessment Scale (ADAS-Cog-1325), the Mini-Mental State Examination (MMSE26), 

and the Montreal Cognitive Assessment (MoCA27).  Third, we evaluated the algorithms in 

relation to well-established tests of learning and memory (Rey Auditory Verbal Learning 

Test,28), episodic memory (Logical Memory Test,29), and executive function (Trail Making 

Test,30) that are known to decline with age.  We then turned to a second independent sample, the 
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Framingham Heart Study (FHS) Offspring Cohort, to evaluate whether and which DNA 

methylation measures of biological aging could longitudinally predict risk of developing 

dementia.   

Methods 

The ADNI DNA Methylation Sample 

Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. The primary goal of ADNI has been to test whether magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). Inclusion and exclusion criteria 

included: Hachinski Ischemic Score31 <=4; Geriatric Depression Scale score32 <6; visual and 

auditory acuity adequate for neuropsychological testing; good general health with no diseases 

precluding enrollment; sixth grade education or work-history equivalent; no medical 

contraindications to MRI; no psychoactive medications that affect cognitive function;  

medications stable for 4 weeks prior to screening; and not enrolled in other trials or studies 

concurrently 33. Data were downloaded from the ADNI data repository (adni.loni.usc.edu) on 

June 3rd 2020. 

DNA Methylation Data 

DNA methylation was measured in DNA from whole blood using the Illumina Infinium 

HumanMethylationEPIC BeadChip Array and run at AbbVie. 649 ADNI participants had 
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methylation data. Participants varied on the number of repeat DNA methylation measurements 

they had; 83 had only a baseline measurement; 121 had 2 measurements (baseline plus 1 repeat, 

mean 14.5 months between measurements (SD=7.06); 407 had 3 measurements, mean 12.1 

months between measurements (SD=1.5); 29 had 4, mean 10.4 months between measurements 

(SD=3.54); and 9 had 5, mean 12.52 months between measurements (SD=2.25). Samples were 

randomized using a modified incomplete-balanced-block design, whereby all samples from a 

participant were placed on the same chip, with remaining chip space occupied by age- and sex-

matched samples. Participants from different diagnosis groups were placed on the same chip to 

avoid confounding.  

DNA methylation data were subjected to QC by ADNI investigators prior to receipt. 

Samples with missing rate >1% at p < 0.05, poor SNP matching to the 65 SNP control probe 

locations, and uncertain sex were excluded. Filtered data were normalized using the 

‘NormalizeMethylumiSet’ function in the R package Methylumi. Prior to normalization, replicate 

samples (test-retest of the same sample, N=198) were identified and removed from the dataset. 

Probes were removed if detection p-value was>0.05 in more than 10% of individuals (N=611 

probes). 

A flowchart documenting the number of samples at each stage of data preparation is 

found in eFigure 1, Panel A. 

Cognitive Assessments 

Data about diagnosis, cognitive impairment screening tests and cognitive function were 

extracted from data tables available in the ‘ADNIMERGE’ package in R, and then cross-matched 

to participants with available DNA methylation data. Measures are described below. 
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 Diagnosis. Diagnosis was made by a study physician at time of assessment and 

categorized as “Cognitively Normal’, “Mild Cognitive Impairment’ and “AD-dementia”.  

 Clinical assessment. The Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-Cog-

13) is a structured scale that evaluates memory, reasoning, language, orientation, ideational 

praxis and constructional praxis25. Delayed Word Recall and Number Cancellation are included 

in addition to the eleven standard ADAS-Cog Items34.  The test is scored in terms of errors, 

ranging from 0 (best performance) to 85 (worse perfomance). The Mini-Mental State Exam 

(MMSE) is a screening instrument that evaluates orientation, memory, attention, concentration, 

naming, repetition, comprehension, and ability to create a sentence and to copy two overlapping 

pentagons26. The MMSE is scored as the number of correctly completed items ranging from 0 

(worse performance) to 30 (best perfomance). The Montreal Cognitive Assessment (MoCA) is 

designed to detect individuals at the MCI stage of cognitive dysfunction27. The scale ranges from 

0 (worse performance) to 30 (best perfomance). 

 Cognitive function. The Rey Auditory Verbal Learning Test is a list learning task which 

assesses learning and memory. On each of 5 learning trials, 15 unrelated nouns are presented 

orally at the rate of one word per second and immediate free recall of the words is elicited. 

Following a 30-minute delay filled with unrelated testing, free recall of the original 15-word list 

is elicited. Both immediate recall and the percent forgotten are used. The Logical Memory Test I 

and II (Delayed Paragraph Recall) is from the Wechsler Memory Scale-Revised (WMS-R)29. 

Free recall of one short story is elicited immediately after being read aloud to the participant and 

again after a thirty-minute delay. The total bits of information recalled after the delay interval 

(maximum score = 25) are analysed. The Trail Making Test: Part B consists of 25 circles, either 

numbered (1 through 13) or containing letters (A through L). Participants connect the circles 
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while alternating between numbers and letters (e.g., A to 1; 1 to B; B to 2; 2 to C).  Time to 

complete (300 second maximum) is the primary measure of interest. 

The Framingham Heart Study Offspring DNA Methylation Sample 

The Framingham Heart Study tracks the development of cardiovascular disease in three 

generations of families recruited in Framingham, Massachusetts beginning in 194835. We 

analyzed data from the second generation of study participants, who were recruited beginning in 

1971. They are known as the Offspring Cohort36. To be included in the DNA methylation Study, 

participants must have attended the Framingham Offspring 8th follow-up visit during 2005-2008 

and have provided a buffy coat sample. 

 

DNA Methylation Data 

DNA methylation was measured in DNA samples from whole blood using Illumina 450k 

Arrays and run at the University of Minnesota and Johns Hopkins University (dbGaP 

phs000724.v9.p13).  

Data were normalized using the ‘dasen’ method in the wateRmelon R package and 

subjected to downstream QC. Samples with missing rate >1% at p < 0.01, poor SNP matching to 

the 65 SNP control probe locations, and outliers by multi-dimensional scaling techniques were 

excluded. Probes with missing rate of >20% at p < 0.01 were also excluded. Additional 

information on DNA methylation, normalization, and quality control is available in Mendelson et 

al..(2017)37. 
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A flowchart documenting the number of samples at each stage of data preparation is 

found in eFigure 1, Panel B. 

 

Dementia diagnosis 

As previously published38-40, participants in this cohort have been assessed at each 

examination with the Mini–Mental State Examination (MMSE) and flagged for further 

examinations if a) they were identified as having possible cognitive impairment on the basis of 

screening assessments; or b) when subjective cognitive decline was reported by the participant or 

a family member; or c) on referral by a treating physician or by ancillary investigators of the 

Framingham Heart Study; or d) after review of outside medical records. All cases of possible 

cognitive decline and dementia were reviewed to determine presence of dementia, as well as 

dementia subtype and date of onset39.  

Dementia ascertainment in our dataset extended through 2018 (dbGaP accession 

pht010750.v1.p13, dataset vr_demsurv_2018_a_1281s). Dementia status was determined for 

2,468 participants. Of this group, N=2,264 were alive and free of dementia at DNA methylation 

baseline. This analysis sample contributed a maximum of 14 years of follow-up time for 

dementia ascertainment, over which interval n=151 (64 men and 87 women) developed dementia 

at an average age of 82 years (SD=6).   

 

DNA methylation Clock estimation 

 In both ADNI and the FHS Offspring Cohort, we calculated four of the DNA methylation 

Age (DNAmAge) clocks (Horvath, Hannum, PhenoAge and GrimAge) using the online 

calculator found at https://dnamage.genetics.ucla.edu/new. The ‘normalization’ and ‘advanced 
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analysis in blood’ options were selected, and data were anonymized prior to upload. From the 

results file, we extracted the corresponding DNA methylation age calculations (DNAmAge, 

DNAmAgeHannum, DNAmPhenoAge, DNAmGrimAge)  along with the estimates of white 

blood cell type abundance. DunedinPACE was calculated in R following the procedures 

described in Belsky et al.17. To account for potential technical confounding introduced during 

DNA methylation measurement (e.g. differential reaction efficiency between batches of assays), 

values of the five algorithms were residualised for the DNA plate number. Finally, to derive 

estimates of DNA methylation age advancement, these values were further residualised for 

chronological age at the time of the DNA assessment. 

Statistical analysis 

 All analyses were conducted in R, except for Cox proportional regression analyses in the 

FHS Offspring Cohort which were conducted in STATA. All regression models were adjusted 

for sex. To enable effect size comparisons, all age-residualized scores were standardized to 

Mean=0, SD=1 prior to analysis. In ADNI, we calculated Huber-White robust standard errors 

using the plm and lmtest packages in R to account for the fact that some individuals contribute 

more than one time point as described in the ‘10.1371/journal.pmed.1002215. In FHS, effect-

sizes are reported as hazard ratios (HR) per SD increment of the aging measures estimated from 

Cox proportional hazard regression. To adjust means for sex, we calculated least-squares means 

with proportional weights in the lsmeans package in R. To account for technical variation, we 

also tested models adjusted for white blood cell abundance (Plasmablasts, 

+CD8pCD28nCD45RA-T cells, naïve CD8 T cells, CD4 T cells, Natural Killer cells, Monocytes 
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and Granulocytes13, 41). All analyses were performed in parallel by a second, independent 

researcher to confirm reproducibility.  

 

Standard Protocol Approvals, Registrations, and Patient Consents 

All research activities were approved by Institutional Review Boards (IRB) at the 

participating study sites.  Participants provided written informed consent.  

 

Data Availability 

 All data used in this report are publically available; access is granted after application 

approval from the relevant study’s research review committee (ADNI: 

http://adni.loni.usc.edu/data-samples/access-data/; FHS Offspring Cohort: 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000724.v9.p13). 
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Results 

DNA methylation measures of aging in ADNI 

DNA methylation data were available for 649 individuals and 1,706 samples (mean(SD) 

age at first DNA collection=74.77(7.66), male=55.6%). Mean education of the 649 individuals 

was 16.22 years (SD=2.71), and the majority self-identified as White (N =636, 98.0%). Table 1 

describes characteristics of participants in ADNI.  

Table 2 contains descriptive data (mean, (SD) and range) about the five measures of 

DNA methylation aging.  The Horvath, Hannum, PhenoAge, and GrimAge clocks are measured 

in units of chronological years, and DunedinPACE is measured in years of physiological decline 

per 1 chronological year. All DNA methylation measures of aging were associated with sex; 

males had older DNA methylation age on the clocks and faster DunedinPACE.  All following 

analyses include sex as a covariate. Similarly, all DNA methylation measures of aging were 

correlated with chronological age, such that chronologically older individuals appeared to have 

older DNA methylation age on the clocks and faster DunedinPACE (ranging from r=0.30 for 

DunedinPACE to r=0.85 for GrimAge).  Going forward we utilize measures of DNA 

methylation age advancement, derived by residualizing the measures described in Table 2 for 

participant age at the time of DNA data collection, rendering them uncorrelated with age. Figure 

1 shows the correlations between the measures of DNA-methylation age-advancement.  The 

measures were significantly intercorrelated; the largest correlations were observed between the 

first-generation clocks and PhenoAge (r=0.45–0.56) and between GrimAge and DunedinPACE 

(r=0.47); otherwise, correlations ranged from r=0.14 to r=0.28.  
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Association between DNA methylation measures of aging and dementia diagnosis in ADNI 

At each DNA data-collection point, ADNI participants were categorized into three 

diagnostic groups. Figure 2 shows the mean values of the five DNA methylation measures of 

aging for the three diagnostic groups: Cognitively Normal (CN), Mild Cognitive Impairment 

(MCI), and Dementia (for comparison purposes, DNA-methylation age-advancement values 

have been standardized to Mean=0 and SD=1). The three diagnostic groups did not differ 

significantly from one another on first-generation clocks (Horvath and Hannum) or second-

generation clocks (PhenoAge and GrimAge).  In contrast, we observed an ordered association 

between diagnoses of CN, MCI, and Dementia for DunedinPACE: Individuals with a diagnosis 

of MCI (beta=0.19, 95% CI:0.03-0.34) and, to a greater extent, individuals with a diagnosis of 

Dementia (beta=0.28, 95% CI:0.08-0.47) had significantly faster DunedinPACE scores than CN 

individuals (see eTable 1 for details).   

Association between DNA methylation measures of aging and cognitive function in ADNI 

At each DNA collection, ADNI participants were given three cognitive screening tests: 

The ADAS-Cog-13, the MMSE, and the MoCA. Table 3, Panel A shows the associations 

between the five DNA-methylation measures of aging and scores on these three cognitive 

screening tests.  Neither of the first generation DNA-methylation clocks nor GrimAge were 

associated with scores on the ADAS-Cog-13, MMSE or MoCA (beta=-0.03 to 0.03).  In contrast, 

advanced PhenoAge and faster DunedinPACE scores were both associated with worse scores on 

ADAS-Cog-13 (beta=0.07 to 0.08) as well as MMSE and MoCA (beta=-0.06 to -0.10), 

indicating greater cognitive impairment.   
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ADNI participants were also administered a battery of cognitive function tests. Table 3, 

Panel B shows the associations between the five DNA methylation measures of aging and four 

measures of cognitive functioning:  Rey Auditory Verbal Learning Test (both learning and 

memory), Logical Memory Test (episodic memory), and the Trail Making Test (executive 

function).  Neither the first generation clocks (Horvath and Hannum) nor GrimAge were 

consistently associated with performance on these tests (beta=-0.05 to 0.01).  In contrast, 

advanced PhenoAge and, to a greater extent, faster DunedinPACE scores were both associated 

with significantly worse learning (beta=-0.06 to -0.12), more forgetting (beta=0.06 to 0.10), and 

worse episodic memory (beta=-0.10 to -0.11) (Figure 3 and eFigure 2).  

Sensitivity and secondary analyses 

Associations reported here were robust in several sensitivity analyses (eTables 1-3). 

First, associations were robust to distributional assumptions.  Both the dementia-screening tests 

and the cognitive function measures had distributions that deviated from normal.  As such, we 

repeated all analyses comparing results with the ‘native’ (i.e., original) scores, log-transformed 

scores, and scores binned into quintiles.  Regardless of how we handled the distributions, the 

results were comparable (eTable 2-3). Second, after controlling for abundance estimates of 

different types of white blood cells, associations between DunedinPACE and clinical diagnoses 

and cognitive function tests were smaller but remained statistically significant at the alpha=0.05 

level (eTables 1 and 3), whereas those with the dementia-screening tests fell short of 

significance (eTable 2). Importantly, Pace of Aging, on which DunedinPACE was trained in an 

independent sample16, 17, includes longitudinal change in observed white blood cell abundance, 

making this an overcontrol. Finally, Apoε4 is known to be associated with dementia risk; 
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however, it was not associated with first-, second-, or third-generation DNA methylation 

measures of aging (eTable 4).  

Association between DNA methylation measures of aging and dementia in the Framingham 

Heart Study (FHS) Offspring Cohort: Replication and extension 

To replicate and extend the test of the association between DunedinPACE and dementia, 

we turned to the FHS Offspring cohort. This longitudinal analysis included N=2,264 participants 

with a maximum of 14 years of follow-up time for dementia ascertainment. Over this time 

interval n=151 (64 men and 87 women) developed dementia at an average age of 82 years 

(SD=6).   

 Participants measured to have more advanced aging on the clocks and faster 

DunedinPACE  at baseline were at increased risk of developing dementia over follow-up; the 

largest effect was for DunedinPACE (HR[95%CI] =1.39[1.21-1.61]), followed by PhenoAge, 

GrimAge, and Horvath (Table 4) As with ADNI, sensitivity analyses controlling for white blood 

cell abundance estimates attenuated effect sizes; only DunedinPACE (HR[95%CI] =1.27[1.07-

1.49]) and the Horvath clock (HR[95%CI] =1.21[1.08-1.36]) significantly predicted risk of 

dementia at p < 0.05 (Table 4 and eFigure 3). 

Discussion  

Aging increases risk for Alzheimer’s disease, related dementias and cognitive 

impairment42. Moreover, the vast majority of cases occur later in life and for such individuals, 

unlike those with the less common familial AD, aging represents the largest risk factor for 

dementia43. The potential to capture the individual dynamics that define the risk of cognitive 

decline attributable to biological aging is of great interest to gerontologists and clinicians alike. 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

In this report, using data from ADNI and the FHS Offspring Cohort, we compared associations 

between first-, second-, and third-generation DNA-methylation measures of aging and multiple 

measures of cognitive aging and dementia.  When evaluated against clinical screening test 

scores, measures of cognitive functioning, and a clinical diagnosis of dementia, the third-

generation DunedinPACE measure was more predictive than earlier generations of clocks. In 

ADNI, it was the only biological aging estimate to show consistent associations with every 

measure of cognitive impairment tested in the predicted direction of faster aging and more 

impairment. Moreover, faster DunedinPACE was associated with increased risk of developing 

future dementia in the FHS Offspring Cohort. 

A DNA methylation algorithm that can assess biological aging should be robustly 

associated with cognitive dysfunction characteristic of AD/ADRD. First, we showed that 

individuals with a diagnosis of dementia and, to a lesser extent, mild cognitive impairment had 

faster DunedinPACE compared to individuals who were cognitively normal. This pattern was 

not observed for the first- and second-generation DNA methylation age-advancement clocks. 

Second, individuals who scored poorly on screening measures commonly used in memory clinics 

(ADAS-Cog-13, MMSE, MoCA) had older DNA-methylation age advancement (assessed via 

PhenoAge) and faster DunedinPACE. Third, individuals’ worse cognitive function was 

associated with older DNA methylation age advancement (assessed via PhenoAge) and faster 

DunedinPACE. It is important to note that the cognitive measures that we examined overlap to 

some extent; for example, the Logical Memory Test is used to derive AD diagnoses.  However, 

we think it essential to present evidence from all of the cognitive measures because different 

studies often evaluate different cognitive measures, making it difficult to compare studies and 

reconcile inconsistencies. 
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Previous studies testing associations between DNA methylation clocks and late-life 

cognition and dementia have yielded equivocal and inconsistent evidence21, 44-46. In contrast, the 

present study suggests that the newer generation DunedinPACE measure is consistently 

associated with multiple manifestations of age-related cognitive deficits. This is consistent with 

previously reported evidence that faster DunedinPACE is associated with greater cognitive 

decline during midlife17.  This consistency suggests that vulnerability to cognitive impairment 

that is the hallmark of risk for dementia can be captured by considering how fast a person is 

aging biologically compared to their age-peers. The finding that extremely fast DunedinPACE 

scores occur with dementia is consistent with the view that dementia is not part of normal aging.   

Consistent with previous studies (e.g.17-19, 24, 47, 48), the five tested DNA methylation 

measures of aging vary in the extent to which they are intercorrelated, and clocks in the same 

generation tend to be more highly correlated with one another. This suggests that although 

different DNA methylation measures of aging capture some common elements, they are also 

clearly distinct. First-generation clocks were trained to predict chronological age. This approach 

is based on the assumption that differences in DNA methylation between older and younger 

people represent biological processes of aging. Second-generation clocks were trained to predict 

mortality, using physiological variables as intermediates. This approach is based on the 

assumption that differences in DNA methylation between people with higher as compared to 

lower risk for mortality represent biological processes of aging. The third-generation 

DunedinPACE was trained to predict biological change between ages 26-45 years in a same-age 

cohort. This approach is based on the assumption that DNA-methylation differences between 

people experiencing slower as compared to more rapid decline in the function of multiple organ 

systems represent biological processes of aging. The evidence presented here suggests that 
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progressive generations of clocks may be more sensitive predictors of cognitive outcomes. 

Moreover, the association of DunedinPACE with dementia recommends midlife prevention if 

some patients’ course toward dementia begins in midlife. 

There are caveats and limitations.  First, despite robust associations between 

DunedinPACE and measures of cognitive aging, none of the currently available measures of 

DNA-methylation aging match clinically-validated risk markers of ADRD  on strength-of-

association. For example, within the ADNI participants analyzed in the present report, 

individuals with a diagnosis of dementia were 12 times more likely to carry 2 APOE ε4 alleles 

than individuals who were cognitively normal (CN), an effect size of a 0.94 SD-unit difference 

between dementia vs CN.  To put the effect size  for the DunedinPACE comparison between 

dementia vs CN in perspective, it yielded a 0.28 SD-unit difference. Second, the majority of 

participants are white because of the lack of ethnic diversity of the participants enrolled in ADNI 

and Framingham. Initial evidence shows that an earlier version of  a methylation Pace of Aging 

algorithm, DunedinPoAm, is associated with poorer physical health among both Black and 

White participants19, but more research is needed on this front. Third, we were able to report 

only cross-sectional associations between DNA-methylation measures of aging and cognitive 

impairment and AD in ADNI because the number transitioning to a new diagnosis was too small 

for statistical power among ADNI participants who had methylation data.  To overcome this 

limitation, we extended our analysis to the larger FHS Offspring Cohort and found that 

DunedinPACE was associated prospectively with future risk of developing dementia.  Fourth, 

this study reports initial replicated evidence that DunedinPACE derived in midlife signals 

dementia risk in late life, but life-course longitudinal studies should evaluate potential causal 

pathways including early-life age accelerators (e.g., low socioeconomic status, low education, 
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smoking) and potential late-life mediators (e.g., disease multimorbidity17).  Fifth, dementia is 

also not a single disease and future, adequately-powered studies with dementia subtypes should 

test for DunedinPACE’s specificity.  Sixth, ample evidence points to genetic loci contibuting to 

dementias49. In contrast, DNA-methylation variation represents epigenetic results of processes 

along pathways toward dementia, suggesting DunedinPACE is best considered a non-causal risk 

indicator.   

As the search gains steam for geroscience-guided interventions that might slow aging and 

prevent the onset of age-related diseases, including Alzheimer’s disease and related dementias, 

the need for reliable measures of biological aging related to dementia is becoming more 

apparent.  Such measures could serve to identify people at high risk for future dementia, and 

could serve as surrogate measures to evaluate interventions while waiting for the longer-term 

outcome of dementia.  DNA-methylation measures of aging have offered promise, but their 

relation to cognitive aging and dementia has been equivocal.  Here we find evidence that a third 

generation DNA-methylation measure of aging, trained on longitudinally measured biological 

decline, may prove useful in dementia research.  
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Tables 

Table 1: Demographic and clinical characetristics of the ADNI and Framingham Heart 

Study Offspring cohorts. Values indicate mean(SD) unless otherwise indicated. *incident 

dementia (%). 

 ADNI FHS Offspring 
Cohort 

 
Individuals 

all available 
samples  

N  649 1,706 2,264 

age, years (SD) 74.77(7.66) 75.44(7.66) 66.05 (8.88)  

sex, % male 55.62 55.28 46.0 

education, years 
(SD) 

16.22(2.71) 16.21(2.70) 14.32 (2.60) 

white (%) 98.00 98.00 98.50 

dementia (%) 14.48 19.93 6.67* 
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Table 2: Descriptive data of the 1st generation (Horvath and Hannum), 2nd generation 
(PhenoAge and GrimAge) and 3rd generation (DunedinPACE) DNA methylation measures 
in ADNI. The Horvath, Hannum, PhenoAge, and GrimAge clocks are measured in units of 
chronological years, and DunedinPACE is measured in years of physiological decline per 1 
chronological year.  The third column reports the mean difference between males and females  
and the fourth column reports correlations (95% Confidence Intervals, adjusted for clustered 
data) between native DNA methylation aging measures (i.e. un-residualised for age) and 
chronological age (Pearson’s r);. The fifth column reports correlations (95% Confidence 
Intervals, adjusted for clustered data) between Age Advancement measures (i.e. residualised for 
age) and chronological age (Pearson’s r); *** p<.001 

 
 

Mean(SD) Range 
mean 

difference, 
males-females 

Correlation (r) with Age 

(95% CI) 

     
Native measure 

Age-Advancement 
measure 

 Chronological 
Age (Years) 

75.44(7.66) 55.00-95.62 1.51 - - 

1st Generation  

 Horvath 64.24(9.36) 28.41-111.74 3.18 0.72(0.67-0.77)*** 0(-0.07-0.07) 

 Hannum 66.11(7.95) 44.78-99.36 2.69 0.78(0.73-0.82)*** 0(-0.07-0.07) 

2nd Generation  

 PhenoAge 63.53(10.31) 32.07-118.80 2.80 0.74(0.70-0.78)*** 0(-0.06-0.06) 

 GrimAge 76.00(7.46) 55.62-102.85 3.87 0.85(0.81-0.89)*** 0(-0.08-0.08) 

3rd Generation  

 DunedinPACE 1.00(0.12) 0.55-1.59 0.03 0.30(0.23-0.37)*** 0(-0.07-0.07) 

Table 3: Associations between DNA methylation measures of aging and cognitive screening 

tests and function tests in ADNI. Panel A shows the results of linear regressions of cognitive 

screening scores (ADAS-Cog-13, higher scores=poorer performance; MMSE, lower 

scores=poorer performance; MoCA, lower scores=poorer performance) on the five DNA 

methylation measures of aging. Panel B shows the results of linear regressions of cognitive 

screening scores (RAVLT immediate recall, lower scores=poorer performance; RAVLT 
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percent forgotten, higher scores=poorer performance; Logical Memory, lower scores=poorer 

performance; Trail Making Test Part B, higher scores=poorer performance) on the five DNA 

methylation measures of aging. Both cognitive screening and function scores and DNA 

methylation measures were standardized to mean=0, SD=1 prior to analysis. All analyses 

included sex as a covariate in the model. To account for clustering, we report Huber-White 

robust standard errors. *** p<.001; ** p<.01 

 

Panel A: Screening Tests 

DNA 
methylation 
measures of 
aging   

ADAS-Cog-13 MMSE MoCA 

Beta (Robust SE) Beta (Robust SE) Beta (Robust SE) 

Horvath 0.00(0.04) 0.01(0.03) 0.03(0.03) 

Hannum 0.02(0.04) -0.02(0.04) -0.02(0.03) 

PhenoAge 0.07(0.03)* -0.06(0.03) -0.07(0.03)* 

GrimAge 0.01(0.03) 0.01(0.03) -0.03(0.03) 

DunedinPACE 0.08(0.04)* -0.08(0.03)* -0.10(0.04)** 

    

Panel B: Cognitive Function Tests 

DNA 
methylation 
measures of 
aging  

RAVLT 
immediate recall 

RAVLT percent 
forgotten 

Logical Memory 
Trail Making Test 

Part B 

Beta (Robust SE) Beta (Robust SE) Beta (Robust SE) Beta (Robust SE) 

Horvath 0.01(0.04) 0.01(0.03) -0.01(0.04) -0.02(0.03) 

Hannum -0.02(0.04) 0.00(0.03) -0.01(0.04) 0.00(0.03) 

PhenoAge -0.06(0.04) 0.06(0.03) -0.10(0.04)** 0.03(0.03) 

GrimAge -0.05(0.03) 0.03(0.03) -0.03(0.03) 0.00(0.03) 

DunedinPACE -0.12(0.04)***  0.10(0.03)** -0.11(0.04)**  0.06(0.04) 
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Table 4: Longitudinal associations of DNA methylation measures of aging with dementia in 
the Framingham Heart Study Cohort. The table reports effect-sizes for DNA methylation 
measures of aging from time-to-event analysis of dementia. The first panel shows results from a 
model including sex and age as covariates and the second panel shows results from a model that 
includes these covariates in addition to white blood cell abundance estimated from the DNA 
methylation data. Time-to-event model effect-sizes are reported as hazard ratios (HR) per 
standard deviation increase in the aging measures. *** p<.001; ** p<.01; * p<.05 
 
 
 

 
 

Model Adjusted for Sex  
Model Adjusted for Sex and 

Estimated Cell Counts 
DNA methylation measures 
of aging 

HR 95% CI 
 

HR 95% CI 

Horvath 1.18** [1.06-1.32] 
 

1.21** [1.08-1.36] 

Hannum 1.09 [0.96-1.23] 
 

0.96 [0.83-1.12] 

PhenoAge 1.25** [1.08-1.44] 
 

1.15 [0.98-1.36] 

GrimAge 1.24** [1.07-1.44] 
 

1.05 [0.86-1.27] 

DunedinPACE  1.39*** [1.21-1.61] 
 

1.27** [1.07-1.49] 
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Figure Captions  

Figure 1: Correlations between the five DNA methylation measures of aging in ADNI. The 

matrix above the diagonal plots the Pearson r statistic (with cell color depicting magnitude from 

light=low to dark=high), while the matrix below the diagonal shows the scatterplots for each 

comparison. The dotted red line describes the linear regression line. Correlations are adjusted for 

sex. 
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Figure 2: Mean DNA methylation age advancement values in ADNI within each of the 

three diagnostic categories. Values are grouped by diagnostic category at time of interview; 

Cognitively Normal (CN, blue bars), Mild Cognitive Impairment (MCI, gold bars) and Dementia 

(grey bars). The three diagnostic status groups did not differ significantly from one another on 

either of the first-generation DNA methylation clocks (Horvath and Hannum clocks) or on the 

second-generation clocks (PhenoAge and GrimAge). In contrast, individuals with MCI or 

Dementia had faster DunedinPACE scores than those who were Cognitively Normal. Bars 

represent means and whiskers represent 95% Confidence Intervals. Values are standardized to 

mean=0, SD=1. 
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Figure 3: DunedinPACE values by test-score quintile for the Rey Auditory Verbal 

Learning test, Logical memory test, and Trail Making test cognitive assessments in ADNI. 

Faster DunedinPACE was associated with poorer learning and memory (RAVLT, immediate 

recall (A) and percent forgotten (B)), episodic memory (Logical memory test (C)), and executive 

functioning (trail-making test part B (D)). Cognitive function scores (x-axis) are binned into 

quintiles (1-5); grey dots represent mean age-advancement value and whiskers represent 95% 

Confidence Intervals. The y-axis represents DunedinPACE (age-residualized, adjusted for sex, 

and standardized to mean=0, SD=1).  
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